/Nvidia launched Pocket Computer Jetson Nano for 99 USD.

Nvidia launched Pocket Computer Jetson Nano for 99 USD.

Nvidia is a company who thinks and work for future, over the years instead of expanding the company has mastered themselves in the segment they are in. When it comes to innovation and having a futuristic approach, which company will do well one who thinks that this could be future or the one who is already living in future in virtually form. Nvidia is the company for many years they have mastered the machine learning and AI and one benefit they have that what ever they make they make in virtual reality which pushes them towards future, what they are working on is totally classified may be with time the things will reveal.

But for now, the company has launched a computer that one can carry in his or her pocket or bag pack. “I still remember the time when we just used to have bulky monitors with tactile keyboards and a mouse with ball and yes the heavy white color CPU with floppy drive”. I never thought as a kid that one day my kid will carry this whole setup in their pocket, and that will more powerful that wats I am using right now. Today that has all changed with the launch of the Jetson Nano just for 99 USD.

Jetson TX2
Jetson TX2

Lets see in Detail what this new Jetson Nano is capable of.

Back in 2015 the company launched the Jetson TX1 “Supercomputer-on-Module” as an embedded solution for robots, drones, and self-driving vehicles that need to do a lot of visual computing. It was the start of a whole range of “AI” products from Nvidia that has proved to be successful. Nvidia says there are hundreds of thousands of Jetson developers today. While it was a workable solution for commercial enterprises, its $599 price tag meant it was often too costly for makers, hobbyists, and amateur enthusiasts.Jetson Nano

Today that has all changed with the launch of the Jetson Nano, a $99 AI computing development kit that opens the way to a Raspberry Pi-like revolution this time for machine learning.

The secret recipe of Nvidia’s AI products is, of course, its GPUs. The Jetson TX1 used a 1024-GFLOP Maxwell GPU with 256 CUDA cores. The TX2 offers 1.3 TFLOPs using a 256-core Pascal GPU, and the top-of-the-range Jetson AGX Xavier breaks 10 TFLOPs with its 512-core Nvidia Volta GPU.

But the Jetson AGX Xavier also breaks the $1,000 barrier as well! For the $99 Jetson Nano, Nvidia has opted for a 128 CUDA core GPU, based on the Maxwell architecture. that powered the company’s GeForce GTX 900-series graphics cards, it’s capable of 472 GFLOPS of FP16 performance, HEVC video encoding at either 4K30 or 3x 1080p30 resolution, and HEVC decoding at 4K60 or 8x 1080p30 meaning it can monitor several high-definition video inputs at once and process the images it sees in real time. This is a powerful GPU to hand to makers. It’s tamed by a massive black heatsink sitting atop the module.Jetson Nano

Nvidia fleshed out the board with a 1.43GHz quad-core ARM A57 processor, 4GB of 64-bit LPDDR4 memory, and gigabit ethernet. Storage is handled via a bring-your-own SD card, just like with the Raspberry Pi. Also like the Raspberry Pi, the Jetson Nano Developer Kit is loaded with hardware connections designed to expose the board’s smarts to the world. Nvidia equipped the board with three USB 2.0 ports, a USB 3.0 port, a MIPI-CSI camera connector, HDMI 2.0, DisplayPort 1.2, and I2S audio out, along with expansion options for a Wi-Fi card, a fan, and a UART header.

The video capabilities of the Jetson Nano are impressive. The idea isn’t that youJetson Nano can watch 4K video, but rather that the unit can process multiple video streams (think about drones with multiple cameras) for object detection, tracking, and obstacle avoidance. While 4K 60fps sounds nice, the Jetson Nano can decode eight video/camera feeds at Full HD at 30 frames per second! Once decoded the streams can be processed simultaneously by the machine learning algorithms for object tracking etc.

The Jetson Nano comes in two forms. A module — which measures just 70 x 45mm for use in final production ready designs, and a development kit that resembles a Raspberry Pi only in looks and offers a turnkey solution for developers and enthusiasts. The former comes with 16GB of eMMC on-board storage while the latter uses a microSD card.

Nvidia Jetson has launched two modules catering two sectors for now, one is the development kit will be useful for commercial organizations that want to build products with machine learning capabilities. The product can be designed using the development kit and then for the final product the modules is used. This is how the other Jetson boards and modules are used.

The second use case is for enthusiasts and hobbyists who may never use the module version but are happy to create projects based around the development kit, much like the Raspberry Pi.

To that end, Nvidia is ready to sell both the modules and the development kits, not just via wholesale distributors, but to a wider market via more conventional outlets.

Raspberry Pi is Bettor or Nvidia Jetson

The Raspberry Pi uses a quad-core Cortex-A53 based processor and comes with a maximum of 1GB of RAM. While it can be fun for running simple Python scripts and other basic tasks, it can be painful to use as a desktop environment. The Jetson Nano has a quad-core Cortex-A57 based CPU and 4GB of RAM. That should mean it should be at least twice as fast a the Raspberry Pi for non-machine learning tasks. Plus, the extra RAM should allow it to run a desktop environment more smoothly.Jetset Nanao

On top of that, the Jetson Nano comes with 40 GPIO pins, just like the Raspberry Pi. While Nvidia doesn’t specifically specify Raspberry Pi compatibility, it does say that the Jetson Nano is “compatible out of the box with many peripherals and other add-ons.” There is also support for the Adafruit Blinka library and the Raspberry Pi Camera V2. The board boots to a full Linux desktop environment via Linux4Tegra, which is derived from Ubuntu 18.04

In other words, the Jetson Nano is just like a Raspberry Pi, but better, stronger, faster! Add all the ML goodness on top and you have a potential game changer.

JetBot Based on Jetset NanoIn other words, the Jetson Nano is just like a Raspberry Pi, but better, stronger, faster! Add all the ML goodness on top and you have a potential game changer. JetBot Based on Jetset Nano

To demonstrate the board’s capabilities Nvidia is launching the JetBot, an open-source AI project based on Jetson Nano. It comes complete with a bill of materials, hardware setup guide, and tutorials. The idea is that anyone with some basic Python skills should be able to build the small robot and learn all about motor control, camera image acquisition, and and AI training by teaching JetBot to follow objects, avoid collisions, etc.Jetset Nanao

Multiple devices running Same OS

One reason why the Raspberry Pi has been so successful, compared to other Arm based Single Board Computers, is that the software is always been updated. There are way too many boards which offer initial support for a version of Linux and then the distribution is never updated or upgraded. No security fixes, no new packages, and certainly no new versions of the kernel.

Nvidia understands this and is doing a good job of keeping it software current and relevant. The Jetson TX1 supported Linux 3.10 and used Ubuntu 14.04. Over time, support fort kernel 4.4 was added followed by kernel 4.9. Likewise, the base Ubuntu distribution has been upgraded from 14.04 to 16.04 and now 18.04.

This means Nvidia is offering a unified development environment across all of its Jetson boards. You could start developing a project on the Jetson Nano, but then if you need more GPU power then an upgrade to a more advanced Jetson board will incur little or no penalty from a software perspective.

It looks like the Jetson Nano could be a fantastic board. The price is good, the general computing performance is significantly better than Raspberry Pi, the machine learning features (both software and hardware) are excellent, and the the potential compatibility with existing hats and sensors means hobbyists can use (and improve) existing projects.